DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

نویسندگان

  • Emil Mladenov
  • Simon Magin
  • Aashish Soni
  • George Iliakis
چکیده

Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress - a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Radiosensitivity Effects of Inhibitors of DNA Strand Break Repair on HeLa Cell

The effects of three drugs (hydroxyurea, 1-/3-o-arabinofuranosylcytosine, and diamide) known to inhibit DNA synthesis on the repair of ionizing radiation-induced DNA single-strand breaks measured by alkaline elution and on cellular radiosensitivity were examined. Inhibition of repair was observed at 10~2 M hydrox yurea, 10~4 M 1-/3-D-arabinofuranosylcytosine, and 5 x 10~5 M diamide, levels caus...

متن کامل

Effects of inhibitors of DNA strand break repair on HeLa cell radiosensitivity.

The effects of three drugs (hydroxyurea, 1-beta-arabinofuranosylcytosine, and diamide) known to inhibit DNA synthesis on the repair of ionizing radiation-induced DNA single-strand breaks measured by alkaline elution and on cellular radiosensitivity were examined. Inhibition of repair was observed at 10(-2) M hydroxyurea, 10(-4) M 1-beta-D-arabinofuranosylcytosine, and 5 X 10(-5) M diamide, leve...

متن کامل

Tumor cell radiosensitivity is a major determinant of tumor response to radiation.

Substantial evidence suggests that the radiosensitivity of the tumor cells is the primary determinant of tumor response to radiation. More recent studies suggest that tumor stroma radiosensitivity is the principle determinant of response. To assess the relationship between intrinsic tumor cell radiosensitivity and tumor response, we altered the intrinsic radiosensitivity of a cloned tumor cell ...

متن کامل

Valproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells

Introduction H istone deacetylase inhibitors (HDIs), as  radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013